Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(10): 5339-5347, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38417143

RESUMO

S-Substituted-l-cysteine sulfoxides are valuable compounds that are contained in plants. Particularly, (+)-alliin and its degraded products have gained significant attention because of their human health benefits. However, (+)-alliin production has been limited to extraction from plants and chemical synthesis; both methods have drawbacks in terms of stability and safety. Here, we proposed the enzymatic cascade reaction for synthesizing (+)-alliin from readily available substrates. To achieve a one-pot (+)-alliin production, we constructed Escherichia coli coexpressing the genes encoding tryptophan synthase from Aeromonas hydrophila ssp. hydrophila NBRC 3820 and l-isoleucine hydroxylase from Bacillus thuringiensis 2e2 for the biocatalyst. Deletion of tryptophanase gene in E. coli increased the yield about 2-fold. Under optimized conditions, (+)-alliin accumulation reached 110 mM, which is the highest productivity thus far. Moreover, natural and unnatural S-substituted-l-cysteine sulfoxides were synthesized by applying various thiols to the cascade reaction. These results indicate that the developed bioprocess would enable the supply of diverse S-substituted-l-cysteine sulfoxides.


Assuntos
Cisteína , Cisteína/análogos & derivados , Escherichia coli , Humanos , Cisteína/metabolismo , Escherichia coli/genética , Sulfóxidos/metabolismo , Engenharia Genética
2.
PLoS One ; 17(8): e0272565, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35925894

RESUMO

The western conifer seed bug (WCSB, Leptoglossus occidentalis) is a pest of many pine species and is invasive worldwide. WCSB directly and indirectly deteriorates pine nut production by sucking seeds from cones. Currently, researchers think that WCSBs search for food by a combination of cues from visible light, infrared radiation, and chemicals such as monoterpenes. Some research revealed that WCSBs prefer larger cones, and it was thought that WCSBs suck seeds from and obtain more heat on larger cones. However, in early spring, we observed that most WCSBs gathered on male cones rather than on female cones and young cones. We hypothesized that male pine cones were warmer than female cones and needles, and WCSBs sucking male cones may receive more heat. To test these hypotheses, we measured spectral reflectance with a hyperspectral sensor and temperature of pine organs with tiny thermocouples, and the data were analyzed by a heat budget model. Our results revealed that male cones were significantly warmer and more reflective than female cones and needles, which may attract WCSBs. These results supported our hypothesis that WCSBs on male cones were warmer than those on other organs. This study will help further understanding of WCSBs and the adaptive value of pine cone colors.


Assuntos
Heterópteros , Pinus , Traqueófitas , Animais , Regulação da Temperatura Corporal , Feminino , Temperatura Alta , Masculino , Recompensa
3.
J Biosci Bioeng ; 134(3): 213-219, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35864060

RESUMO

Enzymatic glycosylation is an industrially useful technique for improving the properties of compounds with hydroxy groups, and the biological activities of the resulting glycosides differ depending on the glycosylation position. Therefore, regioselective glycosyltransferases are required for precise synthesis of glycosides. We found that Rhizobium pusense JCM 16209T could catalyze the regioselective glycosylation of resveratrol. To identify the regioselective glycosyltransferase, two α-glucosidases of R. pusense JCM 16209T (RpG I and RpG II) were cloned and expressed in Escherichia coli. The molecular mass of purified recombinant RpG I and II was estimated to be 60 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). RpG I showed strong glycosylation activity toward resveratrol with 4'-selectivity of 98.3%. The enzyme activity was maximized at pH 8.0 and 50 °C, and enhanced in the presence of Cs+ and Li+ ions. The maximum molar yield of resveratrol 4'-O-α-glucoside from resveratrol reached 41.6% at 30 min, and the concentration of the product was 2.08 mmol L-1. Glycosylation activity was observed toward resveratrol as well as toward caffeic acid, ferulic acid, 6-gingerol, flavonoid, and isoflavonoid compounds with high regioselectivity, indicating that RpG I could glycosylate a wide range of substrates. To the best of our knowledge, there are few reports on microbial glycosyltransferases that are useful for regioselective glycosylation. This research could be the first step toward developing technologies for the precise synthesis of glycosides.


Assuntos
Glucosídeos , Glicosiltransferases , Escherichia coli/genética , Glucosídeos/química , Glicosídeos , Glicosiltransferases/genética , Resveratrol , Rhizobium
4.
J Biosci Bioeng ; 134(3): 182-186, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35764447

RESUMO

A wide variety of S-substituted cysteine derivatives occur in plant metabolites. For example, S-allyl-l-cysteine (SAC), mainly contained in garlic, gathers huge interest because of its favorable bioactivities for human health. However, conventional methods for preparing SAC suffer from several drawbacks with regard to efficiency and toxicity, which highlights the need for improved processes for SAC synthesis. This study aims to develop a novel bioprocess to produce SAC by microbial enzymes from easily available substrates. We found that Escherichia coli had the ability to synthesize SAC from allyl mercaptan, pyruvic acid, and ammonium sulfate. An enzyme purification through 3-step column chromatography, followed by determination of the N-terminal amino acid sequence revealed that tryptophanase (TnaA) was the enzyme responsible for SAC formation. Although the enzyme catalyzed the reversible reaction for synthesizing and degrading SAC, the degradation proceeded significantly faster than the synthesis. Interestingly, TnaA catalyzed the synthesis of a wide range of S-substituted cysteines with alkyl chains or aromatic rings, some of which are present in Allium and Petiveria plants. Our results showed a novel substrate specificity of TnaA toward various S-substituted cysteine. TnaA is a promising biocatalyst for developing a new process to supply various valuable S-substituted cysteine derivatives for medicinal and health-promoting applications.


Assuntos
Cisteína , Escherichia coli , Cisteína/análogos & derivados , Cisteína/metabolismo , Escherichia coli/metabolismo , Humanos , Especificidade por Substrato , Triptofanase/metabolismo
5.
Biosci Biotechnol Biochem ; 86(6): 792-799, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35388878

RESUMO

S-Allyl-l-cysteine (SAC) has received much interest due to its beneficial effects on human health. To satisfy the increasing demand for SAC, this study aims to develop a valuable culturing method for microbial screening synthesizing SAC from readily available materials. Although tryptophan synthase is a promising enzyme for SAC synthesis, its expression in microorganisms is strictly regulated by environmental l-tryptophan. Thus, we constructed a semisynthetic medium lacking l-tryptophan using casamino acids. This medium successfully enhanced the SAC-synthesizing activity of Lactococcus lactis ssp. cremoris NBRC 100676. In addition, microorganisms with high SAC-synthesizing activity were screened by the same medium. Food-related Klebsiella pneumoniae K-15 and Pantoea agglomerans P-3 were found to have a significantly increased SAC-synthesizing activity. The SAC-producing process established in this study is shorter in duration than the conventional garlic aging method. Furthermore, this study proposes a promising alternative strategy for producing food-grade SAC by microorganisms.


Assuntos
Cisteína , Alho , Antioxidantes/metabolismo , Cisteína/química , Alho/química , Humanos , Triptofano/metabolismo
6.
Appl Environ Microbiol ; 87(20): e0133521, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34347519

RESUMO

ß-Hydroxy-α-amino acids are useful compounds for pharmaceutical development. Enzymatic synthesis of ß-hydroxy-α-amino acids has attracted considerable interest as a selective, sustainable, and environmentally benign process. In this study, we identified a novel amino acid hydroxylase, AEP14369, from Sulfobacillus thermotolerans Y0017, which is included in a previously constructed CAS-like superfamily protein library, to widen the variety of amino acid hydroxylases. The detailed structures determined by nuclear magnetic resonance and X-ray crystallography analysis of the enzymatically produced compounds revealed that AEP14369 catalyzed threo-ß-selective hydroxylation of l-His and l-Gln in a 2-oxoglutarate-dependent manner. Furthermore, the production of l-threo-ß-hydroxy-His and l-threo-ß-hydroxy-Gln was achieved using Escherichia coli expressing the gene encoding AEP14369 as a whole-cell biocatalyst. Under optimized reaction conditions, 137 mM (23.4 g liter-1) l-threo-ß-hydroxy-His and 150 mM l-threo-ß-hydroxy-Gln (24.3 g liter-1) were obtained, indicating that the enzyme is applicable for preparative-scale production. AEP14369, an l-His/l-Gln threo-ß-hydroxylase, increases the availability of 2-oxoglutarate-dependent hydroxylase and opens the way for the practical production of ß-hydroxy-α-amino acids in the future. The amino acids produced in this study would also contribute to the structural diversification of pharmaceuticals that affect important bioactivities. IMPORTANCE Owing to an increasing concern for sustainability, enzymatic approaches for producing industrially useful compounds have attracted considerable attention as a powerful complement to chemical synthesis for environment-friendly synthesis. In this study, we developed a bioproduction method for ß-hydroxy-α-amino acid synthesis using a newly discovered enzyme. AEP14369 from the moderate thermophilic bacterium Sulfobacillus thermotolerans Y0017 catalyzed the hydroxylation of l-His and l-Gln in a regioselective and stereoselective fashion. Furthermore, we biotechnologically synthesized both l-threo-ß-hydroxy-His and l-threo-ß-hydroxy-Gln with a titer of over 20 g liter-1 through whole-cell bioconversion using recombinant Escherichia coli cells. As ß-hydroxy-α-amino acids are important compounds for pharmaceutical development, this achievement would facilitate future sustainable and economical industrial applications.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridiales/enzimologia , Glicina/metabolismo , Histidina/metabolismo , Ácidos Cetoglutáricos/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Glicina/análogos & derivados , Histidina/análogos & derivados , Hidroxilação , Oxigenases de Função Mista/genética
7.
Commun Biol ; 4(1): 16, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33398074

RESUMO

The high-valent iron-oxo species formed in the non-heme diiron enzymes have high oxidative reactivity and catalyze difficult chemical reactions. Although the hydroxylation of inert methyl groups is an industrially promising reaction, utilizing non-heme diiron enzymes as such a biocatalyst has been difficult. Here we show a three-component monooxygenase system for the selective terminal hydroxylation of α-aminoisobutyric acid (Aib) into α-methyl-D-serine. It consists of the hydroxylase component, AibH1H2, and the electron transfer component. Aib hydroxylation is the initial step of Aib catabolism in Rhodococcus wratislaviensis C31-06, which has been fully elucidated through a proteome analysis. The crystal structure analysis revealed that AibH1H2 forms a heterotetramer of two amidohydrolase superfamily proteins, of which AibHm2 is a non-heme diiron protein and functions as a catalytic subunit. The Aib monooxygenase was demonstrated to be a promising biocatalyst that is suitable for bioprocesses in which the inert C-H bond in methyl groups need to be activated.


Assuntos
Aminobutiratos/metabolismo , Oxigenases de Função Mista/metabolismo , Rhodococcus/enzimologia , Hidroxilação , Estrutura Quaternária de Proteína
8.
J Biotechnol ; 323: 128-135, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32828832

RESUMO

Toward a sustainable synthesis of value-added chemicals, the method of CO2 utilization attracts great interest in chemical process engineering. Biotechnological CO2 fixation is a promising technology; however, efficient methods that can fix carbon dioxide are still limited. Instead, some parts of microbial decarboxylases allow the introduction of carboxy group into phenolic compounds using bicarbonate ion as a C1 building block. Here, we identified a unique decarboxylase from Arthrobacter sp. K8 that acts on resorcinol derivatives. A high-throughput colorimetric decarboxylase assay facilitated gene cloning of orsellinic acid decarboxylase from genomic DNA library of strain K8. Sequence analysis revealed that the orsellinic acid decarboxylase belonged to amidohydrolase 2 family, but shared low amino acid sequence identity with those of related decarboxylases. Enzymatic characterization unveiled that the decarboxylase introduces a carboxy group in a highly regio-selective manner. We applied the decarboxylase to enzymatic carboxylation of resorcinol derivatives. Using Escherichia coli expressing the decarboxylase gene as a whole cell biocatalyst, orsellinic acid, 2,4-dihydroxybenzoic acid, and 4-methoxysalicylic acid were produced in the presence of saturated bicarbonate. These findings could provide new insights into the production of useful phenolic acids from resorcinol derivatives.


Assuntos
Arthrobacter/enzimologia , Arthrobacter/genética , Carboxiliases/química , Carboxiliases/genética , Clonagem Molecular , Resorcinóis/química , Resorcinóis/metabolismo , Sequência de Aminoácidos , Arthrobacter/isolamento & purificação , Escherichia coli/genética , Hidroxibenzoatos , Cinética , Fenóis/metabolismo , Análise de Sequência , Solo , Microbiologia do Solo , Especificidade por Substrato
9.
Appl Microbiol Biotechnol ; 104(11): 4771-4779, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32291491

RESUMO

Hydroxyproline is an industrially important compound with applications in the pharmaceutical, nutrition, and cosmetic industries. trans-4-Hydroxy-L-proline is recognized as the most abundant of the eight possible isomers (hydroxy group at C-3 or C-4, cis- or trans-configuration, and L- or D-form). However, little attention has been paid to the rare isomers, probably due to their limited availability. This mini-review provides an overview of recent advances in microbial and enzymatic processes to develop practical production strategies for various hydroxyprolines. Here, we introduce three screening strategies, namely, activity-, sequence-, and metabolite-based approaches, allowing identification of diverse proline-hydroxylating enzymes with different product specificities. All naturally occurring hydroxyproline isomers can be produced by using suitable hydroxylases in a highly regio- and stereo-selective manner. Furthermore, crystal structures of relevant hydroxylases provide much insight into their functional roles. Since hydroxylases acting on free L-proline belong to the 2-oxoglutarate-dependent dioxygenase superfamily, cellular metabolism of Escherichia coli coupled with a hydroxylase is a valuable source of 2-oxoglutarate, which is indispensable as a co-substrate in L-proline hydroxylation. Further, microbial hydroxyproline 2-epimerase may serve as a highly adaptable tool to convert L-hydroxyproline into D-hydroxyproline. KEY POINTS: • Proline hydroxylases serve as powerful tools for selectivel-proline hydroxylation. • Engineered Escherichia coli are a robust platform for hydroxyproline production. • Hydroxyproline epimerase convertsl-hydroxyproline intod-hydroxyproline.


Assuntos
Escherichia coli/enzimologia , Hidroxiprolina/biossíntese , Isomerases de Aminoácido/metabolismo , Biocatálise , Indução Enzimática , Hidroxilação , Isomerismo , Oxigenases de Função Mista/metabolismo
10.
Appl Microbiol Biotechnol ; 103(14): 5689-5698, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31106391

RESUMO

L-Hydroxyproline (Hyp) is a valuable intermediate for the synthesis of pharmaceuticals; consequently, a practical process for its production has been in high demand. To date, industrial processes have been developed by using L-Pro hydroxylases. However, a process for the synthesis of trans-3-Hyp has not yet been established, because of the lack of highly selective enzymes that can convert L-Pro to trans-3-Hyp. The present study was designed to develop a biocatalytic trans-3-Hyp production process. We speculated that ectoine hydroxylase (EctD), which is involved in the hydroxylation of the known compatible solute ectoine, may possess the ability to hydroxylate L-Pro, since the structures of ectoine and 5-hydroxyectoine resemble those of L-Pro and trans-3-Hyp, respectively. Consequently, we discovered that ectoine hydroxylases from Halomonas elongata, as well as some actinobacteria, catalyzed L-Pro hydroxylation to form trans-3-Hyp. Of these, ectoine hydroxylase from Streptomyces cattleya also utilized 3,4-dehydro-L-Pro, 2-methyl-L-Pro, and L-pipecolic acid as substrates. In the whole-cell bioconversion of L-Pro into trans-3-Hyp using Escherichia coli expressing the ectD gene from S. cattleya, only 12.4 mM trans-3-Hyp was produced from 30 mM L-Pro, suggesting a rapid depletion of 2-oxoglutarate, an essential component of enzyme activity as a cosubstrate, in the host. Therefore, the endogenous 2-oxoglutarate dehydrogenase gene was deleted. Using this deletion mutant as the host, trans-3-Hyp production was enhanced up to 26.8 mM from 30 mM L-Pro, with minimal loss of 2-oxoglutarate. This finding is not only beneficial for trans-3-Hyp production, but also for other E. coli bioconversion processes involving 2-oxoglutarate-utilizing enzymes.


Assuntos
Halomonas/enzimologia , Hidroxiprolina/biossíntese , Oxigenases de Função Mista/metabolismo , Prolina/metabolismo , Streptomyces/enzimologia , Diamino Aminoácidos , Proteínas de Bactérias/metabolismo , Biocatálise , Escherichia coli/genética , Deleção de Genes , Hidroxilação , Complexo Cetoglutarato Desidrogenase/genética
11.
Appl Environ Microbiol ; 85(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31003981

RESUMO

Recent papers have reported dipeptides containing d-amino acids to have novel effects that cannot be observed with ll-dipeptides, and such dipeptides are expected to be novel functional compounds for pharmaceuticals and food additives. Although the functions of d-amino acid-containing dipeptides are gaining more attention, there are few reports on the synthetic enzymes that can accept d-amino acids as substrates, and synthetic methods for d-amino acid-containing dipeptides have not yet been constructed. Previously, we developed a chemoenzymatic system for amide synthesis that comprised enzymatic activation and a subsequent nucleophilic substitution reaction. In this study, we demonstrated the application of the system for d-amino acid-containing-dipeptide synthesis. We chose six adenylation domains as targets according to our newly constructed hypothesis, i.e., an adenylation domain located upstream from the epimerization domain may activate d-amino acid as well as l-amino acid. We successfully synthesized over 40 kinds of d-amino acid-containing dipeptides, including ld-, dl-, and dd-dipeptides, using only two adenylation domains, TycA-A from tyrocidine synthetase and BacB2-A from bacitracin synthetase. Furthermore, this study offered the possibility that the epimerization domain could be a clue to the activity of the adenylation domains toward d-amino acid. This paper provides additional information regarding d-amino acid-containing-dipeptide synthesis through the combination of enzymatic adenylation and chemical nucleophilic reaction, and this system will be a useful tool for dipeptide synthesis.IMPORTANCE Because almost all amino acids in nature are l-amino acids, the functioning of d-amino acids has received little attention. Thus, there is little information available on the activity of enzymes toward d-amino acids or synthetic methods for d-amino acid-containing dipeptides. Recently, d-amino acids and d-amino acid-containing peptides have attracted attention as novel functional compounds, and d-amino acid-activating enzymes and synthetic methods are required for the development of the d-amino acid-containing-peptide industry. This study provides additional knowledge regarding d-amino acid-activating enzymes and proposes a unique synthetic method for d-amino acid-containing peptides, including ld-, dl-, and dd-dipeptides.


Assuntos
Aminoácidos/química , Proteínas de Bactérias/química , Dipeptídeos/química , Peptídeo Sintases/química , Bacillus licheniformis/enzimologia , Bacillus licheniformis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Paenibacillus/enzimologia , Paenibacillus/genética , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Domínios Proteicos , Especificidade por Substrato
12.
Sci Rep ; 8(1): 2950, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29440726

RESUMO

Amide bond formation serves as a fundamental reaction in chemistry, and is practically useful for the synthesis of peptides, food additives, and polymers. However, current methods for amide bond formation essentially generate wastes and suffer from poor atom economy under harsh conditions. To solve these issues, we demonstrated an alternative synthesis method for diverse tryptophyl-N-alkylamides by the combination of the first adenylation domain of tyrocidine synthetase 1 with primary or secondary amines as nucleophiles. Moreover, the physiological role of this domain is L-phenylalanine adenylation; however, we revealed that it displayed broad substrate flexibility from mono-substituted tryptophan analogues to even D-tryptophan. To the best of our knowledge, this is the first evidence for an adenylating enzyme-mediated direct amide bond formation via a sequential enzymatic activation of amino acids followed by nucleophilic substitution by general amines. These findings facilitate the design of a promising tool for biocatalytic straightforward amide bond formation with less side products.


Assuntos
Monofosfato de Adenosina/metabolismo , Amidas/química , Peptídeo Sintases/metabolismo , Fenilalanina/metabolismo , Especificidade por Substrato
13.
J Biosci Bioeng ; 125(6): 644-648, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29366718

RESUMO

An ATP regeneration system is advantageous for industrial processes that are coupled with ATP-dependent enzymes. For ATP regeneration from AMP, a few methods have been reported; however, these methods employ multiple enzymes. To establish an ATP regeneration system using a single enzyme, we focused on class III polyphosphate kinase 2 (class III PPK2) that can synthesize ATP from AMP and polyphosphate. We constructed an ATP regeneration system from AMP using Deipr_1912, a class III PPK2 from Deinococcus proteolyticus NBRC 101906T, coupled with aminoacyl proline (Xaa-Pro) synthesis catalyzed by the adenylation domain of tyrocidine synthetase A (TycA-A). Using this system, 0.87 mM of l-Trp-l-Pro was successfully synthesized from AMP after 72 h. Farther, addition of inorganic pyrophosphatase from Escherichia coli to the coupling reaction increased the reaction rate by 14-fold to yield 6.2 mM l-Trp-l-Pro. When the coupling reaction was applied to whole-cell reactions in E. coli BL21(DE3) pepQ-putA-, ATP was successfully regenerated from AMP by Deipr_1912, and 6.7 mM of l-Trp-l-Pro was produced after 24 h with the supplementation of 10 mM AMP. In addition, by altering the substrate amino acid of TycA-A, not only l-Trp-l-Pro, but also various other l-Xaa-l-Pro (Xaa = Val, Leu, Met, or Tyr) were produced using the whole-cell reaction incorporating ATP regeneration. Therefore, a production method for Xaa-Pro employing the adenylation domain of a nonribosomal peptide synthetase was established by introducing an ATP regeneration system that utilizes class III PPK2 with pyrophosphatase.


Assuntos
Trifosfato de Adenosina/metabolismo , Aminoácidos/metabolismo , Aminoacilação , Peptídeo Sintases/química , Peptídeo Sintases/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Prolina/metabolismo , Domínio Catalítico/genética , Clonagem Molecular , Dipeptídeos/metabolismo , Escherichia coli/metabolismo , Peptídeo Sintases/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Prolina/análogos & derivados , Domínios Proteicos/genética , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
14.
Appl Environ Microbiol ; 83(17)2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28667106

RESUMO

Hydroxylation via C-H bond activation in the absence of any harmful oxidizing reagents is technically difficult in modern chemistry. In this work, we attempted to generate pharmaceutically important hydroxylysine from readily available l-lysine with l-lysine hydroxylases from diverse microorganisms. Clavaminic acid synthase-like superfamily gene mining and phylogenetic analysis led to the discovery of six biocatalysts, namely two l-lysine 3S-hydroxylases and four l-lysine 4R-hydroxylases, the latter of which partially matched known hydroxylases. Subsequent characterization of these hydroxylases revealed their capacity for regio- and stereoselective hydroxylation into either C-3 or C-4 positions of l-lysine, yielding (2S,3S)-3-hydroxylysine and (2S,4R)-4-hydroxylysine, respectively. To determine if these factors had industrial application, we performed a preparative production of both hydroxylysines under optimized conditions. For this, recombinant l-lysine hydroxylase-expressing Escherichia coli cells were used as a biocatalyst for l-lysine bioconversion. In batch-scale reactions, 531 mM (86.1 g/liter) (2S,3S)-3-hydroxylysine was produced from 600 mM l-lysine with an 89% molar conversion after a 52-h reaction, and 265 mM (43.0 g/liter) (2S,4R)-4-hydroxylysine was produced from 300 mM l-lysine with a molar conversion of 88% after 24 h. This report demonstrates the highly efficient production of hydroxylysines using lysine hydroxylases, which may contribute to future industrial bioprocess technologies.IMPORTANCE The present study identified six l-lysine hydroxylases belonging to the 2-oxoglutarate-dependent dioxygenase superfamily, although some of them overlapped with known hydroxylases. While the substrate specificity of l-lysine hydroxylases was relatively narrow, we found that (2S,3S)-3-hydroxylysine was hydroxylated by 4R-hydroxylase and (2S,5R)-5-hydroxylysine was hydroxylated by both 3S- and 4R-hydroxylases. Moreover, the l-arginine hydroxylase VioC also hydroxylated l-lysine, albeit to a lesser extent. Further, we also demonstrated the bioconversion of l-lysine into (2S,3S)-3-hydroxylysine and (2S,4R)-4-hydroxylysine on a gram scale under optimized conditions. These findings provide new insights into biocatalytic l-lysine hydroxylation and thus have a great potential for use in manufacturing bioprocesses.


Assuntos
Bactérias/enzimologia , Hidroxilisina/metabolismo , Lisina/metabolismo , Oxigenases de Função Mista/metabolismo , Bactérias/química , Bactérias/classificação , Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Hidroxilisina/química , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Família Multigênica , Filogenia , Especificidade por Substrato
15.
Sci Rep ; 6: 38720, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27929065

RESUMO

In the aconitase superfamily, which includes the archetypical aconitase, homoaconitase, and isopropylmalate isomerase, only aconitase X is not functionally annotated. The corresponding gene (LhpI) was often located within the bacterial gene cluster involved in L-hydroxyproline metabolism. Screening of a library of (hydroxy)proline analogues revealed that this protein catalyzes the dehydration of cis-3-hydroxy-L-proline to Δ1-pyrroline-2-carboxylate. Furthermore, electron paramagnetic resonance and site-directed mutagenic analyses suggests the presence of a mononuclear Fe(III) center, which may be coordinated with one glutamate and two cysteine residues. These properties were significantly different from those of other aconitase members, which catalyze the isomerization of α- to ß-hydroxy acids, and have a [4Fe-4S] cluster-binding site composed of three cysteine residues. Bacteria with the LhpI gene could degrade cis-3-hydroxy-L-proline as the sole carbon source, and LhpI transcription was up-regulated not only by cis-3-hydroxy-L-proline, but also by several isomeric 3- and 4-hydroxyprolines.


Assuntos
Aconitato Hidratase/química , Bactérias/enzimologia , Hidroliases/química , Proteínas Ferro-Enxofre/química , Aconitato Hidratase/genética , Aconitato Hidratase/metabolismo , Bactérias/genética , Domínio Catalítico , Hidroliases/genética , Hidroliases/metabolismo , Hidroxiprolina/química , Hidroxiprolina/genética , Hidroxiprolina/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo
16.
Appl Microbiol Biotechnol ; 100(1): 243-53, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26411456

RESUMO

Naturally occurring L-hydroxyproline in its four regio- and stereoisomeric forms has been explored as a possible precursor for pharmaceutical agents, yet the selective synthesis of trans-3-hydroxy-L-proline has not been achieved. Our aim was to develop a novel biocatalytic asymmetric method for the synthesis of trans-3-hydroxy-L-proline. So far, we focused on the rhizobial arginine catabolic pathway: arginase and ornithine cyclodeaminase are involved in L-arginine degradation to L-proline via L-ornithine. We hypothesized that trans-3-hydroxy-L-proline should be synthesized if arginase and ornithine cyclodeaminase act on (2S,3S)-3-hydroxyarginine and (2S,3S)-3-hydroxyornithine, respectively. To test this hypothesis, we cloned the genes of L-arginine 3-hydroxylase, arginase, and ornithine cyclodeaminase and overexpressed them in Escherichia coli, with subsequent enzyme purification. After characterization and optimization of each enzyme, a three-step procedure involving L-arginine 3-hydroxylase, arginase, and ornithine cyclodeaminase (in this order) was performed using L-arginine as a starting substrate. At the second step of the procedure, putative hydroxyornithine was formed quantitatively by arginase from (2S,3S)-3-hydroxyarginine. Nuclear magnetic resonance and chiral high-performance liquid chromatography analyses revealed that the absolute configuration of this compound was (2S,3S)-3-hydroxyornithine. In the last step of the procedure, trans-3-hydroxy-L-proline was synthesized selectively by ornithine cyclodeaminase from (2S,3S)-3-hydroxyornithine. Thus, we successfully developed a novel synthetic route, comprised of three reactions, to convert L-arginine to trans-3-hydroxy-L-proline. The excellent selectivity makes this procedure simpler and more efficient than conventional chemical synthesis.


Assuntos
Arginina/metabolismo , Hidroxiprolina/metabolismo , Redes e Vias Metabólicas/genética , Amônia-Liases/genética , Amônia-Liases/metabolismo , Arginase/genética , Arginase/metabolismo , Biotransformação , Cromatografia Líquida , Clonagem Molecular , Escherichia coli/genética , Expressão Gênica , Espectroscopia de Ressonância Magnética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
17.
Appl Environ Microbiol ; 81(11): 3648-54, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25795668

RESUMO

We developed a novel process for efficient synthesis of L-threo-3-hydroxyaspartic acid (L-THA) using microbial hydroxylase and hydrolase. A well-characterized mutant of asparagine hydroxylase (AsnO-D241N) and its homologous enzyme (SCO2693-D246N) were adaptable to the direct hydroxylation of L-aspartic acid; however, the yields were strictly low. Therefore, the highly stable and efficient wild-type asparagine hydroxylases AsnO and SCO2693 were employed to synthesize L-THA. By using these recombinant enzymes, L-THA was obtained by L-asparagine hydroxylation by AsnO followed by amide hydrolysis by asparaginase via 3-hydroxyasparagine. Subsequently, the two-step reaction was adapted to one-pot bioconversion in a test tube. L-THA was obtained in a small amount with a molar yield of 0.076% by using intact Escherichia coli expressing the asnO gene, and thus, two asparaginase-deficient mutants of E. coli were investigated. A remarkably increased L-THA yield of 8.2% was obtained with the asparaginase I-deficient mutant. When the expression level of the asnO gene was enhanced by using the T7 promoter in E. coli instead of the lac promoter, the L-THA yield was significantly increased to 92%. By using a combination of the E. coli asparaginase I-deficient mutant and the T7 expression system, a whole-cell reaction in a jar fermentor was conducted, and consequently, L-THA was successfully obtained from L-asparagine with a maximum yield of 96% in less time than with test tube-scale production. These results indicate that asparagine hydroxylation followed by hydrolysis would be applicable to the efficient production of L-THA.


Assuntos
Ácido Aspártico/análogos & derivados , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Engenharia Metabólica , Oxigenases de Função Mista/metabolismo , Proteínas Recombinantes/metabolismo , Streptomyces coelicolor/enzimologia , Ácido Aspártico/metabolismo , Escherichia coli/genética , Hidrólise , Hidroxilação , Oxigenases de Função Mista/genética , Proteínas Recombinantes/genética , Streptomyces coelicolor/genética
18.
Anal Biochem ; 477: 89-91, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25615416

RESUMO

We demonstrated the usefulness of a hydroxamate-based colorimetric assay for predicting amide bond formation (through an aminoacyl-AMP intermediate) by the adenylation domain of nonribosomal peptide synthetases. By using a typical adenylation domain of tyrocidine synthetase (involved in tyrocidine biosynthesis), we confirmed the correlation between the absorbance at 490 nm of the l-Trp-hydroxamate-Fe(3+) complex and the formation of l-Trp-l-Pro, where l-Pro was used instead of hydroxylamine. Furthermore, this assay was adapted to the adenylation domains of surfactin synthetase (involved in surfactin biosynthesis) and bacitracin synthetase (involved in bacitracin biosynthesis). Consequently, the formation of various aminoacyl l-Pro formations was observed.


Assuntos
Amidas/química , Colorimetria/métodos , Ácidos Hidroxâmicos/química , Peptídeo Sintases/química , Peptídeo Sintases/metabolismo , Processamento de Proteína Pós-Traducional , Monofosfato de Adenosina/metabolismo , Bacillales/enzimologia , Estrutura Terciária de Proteína
19.
ACS Synth Biol ; 4(4): 383-92, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25171735

RESUMO

Enzymatic regio- and stereoselective hydroxylation are valuable for the production of hydroxylated chiral ingredients. Proline hydroxylases are representative members of the nonheme Fe(2+)/α-ketoglutarate-dependent dioxygenase family. These enzymes catalyze the conversion of L-proline into hydroxy-L-prolines (Hyps). L-Proline cis-4-hydroxylases (cis-P4Hs) from Sinorhizobium meliloti and Mesorhizobium loti catalyze the hydroxylation of L-proline, generating cis-4-hydroxy-L-proline, as well as the hydroxylation of L-pipecolic acid (L-Pip), generating two regioisomers, cis-5-Hypip and cis-3-Hypip. To selectively produce cis-5-Hypip without simultaneous production of two isomers, protein engineering of cis-P4Hs is required. We therefore carried out protein engineering of cis-P4H to facilitate the conversion of the majority of L-Pip into the cis-5-Hypip isomer. We first solved the X-ray crystal structure of cis-P4H in complex with each of L-Pro and L-Pip. Then, we conducted three rounds of directed evolution and successfully created a cis-P4H triple mutant, V97F/V95W/E114G, demonstrating the desired regioselectivity toward cis-5-Hypip.


Assuntos
Proteínas de Bactérias , Mesorhizobium/enzimologia , Ácidos Pipecólicos , Prolil Hidroxilases , Sinorhizobium meliloti/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Hidroxilação , Ácidos Pipecólicos/química , Ácidos Pipecólicos/metabolismo , Prolil Hidroxilases/química , Prolil Hidroxilases/metabolismo , Estrutura Terciária de Proteína
20.
Biosci Biotechnol Biochem ; 78(8): 1384-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25130741

RESUMO

We evaluated the substrate specificities of four proline cis-selective hydroxylases toward the efficient synthesis of proline derivatives. In an initial evaluation, 15 proline-related compounds were investigated as substrates. In addition to l-proline and l-pipecolinic acid, we found that 3,4-dehydro-l-proline, l-azetidine-2-carboxylic acid, cis-3-hydroxy-l-proline, and l-thioproline were also oxygenated. Subsequently, the product structures were determined, revealing cis-3,4-epoxy-l-proline, cis-3-hydroxy-l-azetidine-2-carboxylic acid, and 2,3-cis-3,4-cis-3,4-dihydroxy-l-proline.


Assuntos
Bactérias/enzimologia , Dioxigenases/metabolismo , Ácidos Cetoglutáricos/metabolismo , Oxigênio/química , Prolina/análogos & derivados , Prolina/química , Estereoisomerismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...